Skip to main content
Log inGet a demo

What's in Store for Data Teams in 2023?

Here’s what three dozen industry practitioners had to say.

Erik Edelmann.

Erik Edelmann

December 14, 2022

18 minutes

Data predictions for 2023
John Iwanski.

...Technology leaders are going to have to manage a major inflection point with this recession…Budgets/hiring are going to be scrutinized. If your projects don't have clearly defined business outcomes that impact the top or bottom line, they aren't going to get off the ground. Now is the time to engage with the business for both funding and guidance to make sure both tech leaders and business leaders are driving towards the same end goals.

John Iwanski

John Iwanski

Regional Account Director

phData

Mark Rittman.

The good times for data teams and the modern data stack are, unfortunately, over. The focus for businesses in 2023 will be firstly, staying alive and saving money, and then a far second will be growth in the business, data teams, and budgets. Expect the focus for data analytics to be on business efficiencies, cost reduction and profitability, and increasing team productivity through AI and data-driven smart workflows.

Mark Rittman

Mark Rittman

CEO

Rittman Analytics

John Iwanski.

...Technology leaders are going to have to manage a major inflection point with this recession…Budgets/hiring are going to be scrutinized. If your projects don't have clearly defined business outcomes that impact the top or bottom line, they aren't going to get off the ground. Now is the time to engage with the business for both funding and guidance to make sure both tech leaders and business leaders are driving towards the same end goals.

John Iwanski

John Iwanski

Regional Account Director

phData

Mark Rittman.

The good times for data teams and the modern data stack are, unfortunately, over. The focus for businesses in 2023 will be firstly, staying alive and saving money, and then a far second will be growth in the business, data teams, and budgets. Expect the focus for data analytics to be on business efficiencies, cost reduction and profitability, and increasing team productivity through AI and data-driven smart workflows.

Mark Rittman

Mark Rittman

CEO

Rittman Analytics

Consistent Optimism

Others, however, have a more upbeat take on how market conditions will impact data.

Georgi Tasev.

In 2023, companies will continue pushing to be more data-driven. A slowing economy will mean a shift to data projects focusing on financial resiliency and cost mitigation [not a de-emphasis on data in general]. Companies that have already built a strong data culture will be able to do so more effectively.

Georgi Tasev

Georgi Tasev

Sr. Data Scientist

Schneider National Logistics

Anna Filippova.

Data teams will become points of increasingly high leverage for businesses that invest in them correctly. As economic conditions change around us, businesses will look to ground themselves in numbers that help them become more efficient. Data teams already hold incredibly rich context about the operation of their business, and are well positioned to take advantage of the opportunity to lead business transformation narratives.

Anna Filippova

Anna Filippova

Director of Community

dbt Labs

Dayna Shoemaker.

Budget constraints won’t devalue data. Companies will need to lean heavily into their data, their most valuable asset. Data will help them uncover (in)efficiencies as well as provide valuable insights on where to prioritize resources for the greatest impact.

Dayna Shoemaker

Dayna Shoemaker

Sr. Manager, Enterprise Product Marketing

Fivetran

Georgi Tasev.

In 2023, companies will continue pushing to be more data-driven. A slowing economy will mean a shift to data projects focusing on financial resiliency and cost mitigation [not a de-emphasis on data in general]. Companies that have already built a strong data culture will be able to do so more effectively.

Georgi Tasev

Georgi Tasev

Sr. Data Scientist

Schneider National Logistics

Anna Filippova.

Data teams will become points of increasingly high leverage for businesses that invest in them correctly. As economic conditions change around us, businesses will look to ground themselves in numbers that help them become more efficient. Data teams already hold incredibly rich context about the operation of their business, and are well positioned to take advantage of the opportunity to lead business transformation narratives.

Anna Filippova

Anna Filippova

Director of Community

dbt Labs

Focus on Business Value

Others have more neutral views on this theme, but still predict an increased focus on the ROI of data projects and functions, or an increased willingness to use lighter-weight, cost-effective solutions in response to this new focus on ROI.

Lorena Vazquez.

With the tightening of budgets being seen across the board due to market conditions, I predict that within smaller organizations we will see companies rely less on self-service tools and more on people doing manual data pulls from their data warehouse. This could mean an increase of either open source tools (if orgs have technical teams to do so) or relying more on Excel or Google Sheets to do more of their reporting.

Lorena Vazquez

Lorena Vazquez

Associate Director, Business Analytics

Wonder

David Jayatillake.

Data teams are going start focusing on OPEX and profitability more than in 2021/2022, whether this means controlling their spend on cloud and/or focusing more on their business rather than spending as much time on infrastructure and engineering. The business is going to lean on the data team to help them squeeze out efficiencies, to grow in a sustainable way.

David Jayatillake

David Jayatillake

Head of Data

Metaplane

Gordon Wong.

Teams and companies will become increasingly interested in the ROI of data projects. As the recession takes effect and budgets tighten, projects without clear purpose will struggle for funding. Data teams can help themselves by learning to measure the costs of projects and the projected value. Data teams that have this awareness will also naturally seek to get more value out of existing data products through evangelization, education, user support, and investments in reliability.

Gordon Wong

Gordon Wong

Principle Consultant & Founder

Wong Decision Intelligence

Lorena Vazquez.

With the tightening of budgets being seen across the board due to market conditions, I predict that within smaller organizations we will see companies rely less on self-service tools and more on people doing manual data pulls from their data warehouse. This could mean an increase of either open source tools (if orgs have technical teams to do so) or relying more on Excel or Google Sheets to do more of their reporting.

Lorena Vazquez

Lorena Vazquez

Associate Director, Business Analytics

Wonder

David Jayatillake.

Data teams are going start focusing on OPEX and profitability more than in 2021/2022, whether this means controlling their spend on cloud and/or focusing more on their business rather than spending as much time on infrastructure and engineering. The business is going to lean on the data team to help them squeeze out efficiencies, to grow in a sustainable way.

David Jayatillake

David Jayatillake

Head of Data

Metaplane

Theme #2: Data Teams And Culture Will Begin to Look Different

Even more predictions were around how data teams fit into and add value within their organizations. This isn’t totally surprising given the proliferation of conversations about things like “Data Contracts” around the data community. Some recurring themes included a new focus on data “process”, changes to data career paths and roles, and shifts in how data practitioners do their work.

New Process to Complement New Tech

Several predictions centered around the idea that even the “perfect” technology stack can’t fulfill its potential without proper business processes.

Rhys Berkwitt.

Companies will become less fixated on implementing the “perfect” stack and develop a healthier data culture of evaluating and defining their business challenges and objectives before they design and build technical solutions that are meant to address them.

Rhys Berkwitt

Rhys Berkwitt

Data Strategy Manager

Data Culture

Kelly Burdine.

When I think of data maturity, I think the three main factors are people, process, and tools. Investments in people and tools have come along way in just the last five years…but I still hear a lot of questions around process. Data teams are unique in that they serve the entire business but often get housed in a specific department…We are still learning what works and what doesn’t, and so I think we will see an increased focus around developing and defining data team processes in 2023.

Kelly Burdine

Kelly Burdine

Director of Data Science & Analytics

Wellthy

Michelle Ballen-Griffin.

We’ll start to witness more discussion around the people and process side of things (as opposed to technology and techniques). At this point, the high-performing data teams have nailed the fundamentals: they have reliable data models, their data consumers are able to self-service, and their data is operationalized. As these teams continue to climb the analytical maturity ladder via experimentation and predictive modeling, they’ll learn to navigate the friction associated with poor process. They’ll learn the value of being intentional and deliberate upfront when it comes to planning cross-functional initiatives. Data professionals at all levels will find themselves stepping up as leaders and influencing their organizations to standardize processes.

Michelle Ballen-Griffin

Michelle Ballen-Griffin

Head of Data Analytics

Future

Rhys Berkwitt.

Companies will become less fixated on implementing the “perfect” stack and develop a healthier data culture of evaluating and defining their business challenges and objectives before they design and build technical solutions that are meant to address them.

Rhys Berkwitt

Rhys Berkwitt

Data Strategy Manager

Data Culture

Kelly Burdine.

When I think of data maturity, I think the three main factors are people, process, and tools. Investments in people and tools have come along way in just the last five years…but I still hear a lot of questions around process. Data teams are unique in that they serve the entire business but often get housed in a specific department…We are still learning what works and what doesn’t, and so I think we will see an increased focus around developing and defining data team processes in 2023.

Kelly Burdine

Kelly Burdine

Director of Data Science & Analytics

Wellthy

Data-to-Business SLAs

Some others touched on how data teams work with their stakeholders, foretelling that 2023 will see a new emphasis on the SLA between data teams and their business stakeholders.

Dan Goldstein.

This will be the year companies see data as more than just an internal resource; they will start thinking of it as an actual product, adding context and actionability for their partners, customers, and vendors.

Dan Goldstein

Dan Goldstein

Sales Manager, Data Analytics

Google

Emilie Schario.

Companies will start realizing when metrics are “good enough” when directionally accurate but not precise, and that will allow data team members to be more effective.

Emilie Schario

Emilie Schario

CEO

Turbine

Teresa Kovich.

Data teams will increasingly understand, and make strides towards helping their organizations and stakeholders understand, that data governance is not about numbers being 'right' or 'wrong', but about numbers being understood.

Teresa Kovich

Teresa Kovich

Principal Consultant

DAS42

Dan Goldstein.

This will be the year companies see data as more than just an internal resource; they will start thinking of it as an actual product, adding context and actionability for their partners, customers, and vendors.

Dan Goldstein

Dan Goldstein

Sales Manager, Data Analytics

Google

Emilie Schario.

Companies will start realizing when metrics are “good enough” when directionally accurate but not precise, and that will allow data team members to be more effective.

Emilie Schario

Emilie Schario

CEO

Turbine

Workflows And Expectations

Others thought there would be some shifts in the technical aspects of the data practitioner’s workflow, or changes to expectations around skillsets and deliverables.

Alisa Aylward.

... As analytics engineering continues to make technical and professional strides, I think data engineers will become more focused on infrastructure and less on data. I think it'll be important in the field for data engineers to learn more about AWS [and other cloud] services, containers, and software engineering paradigms.

Alisa Aylward

Alisa Aylward

Principal Data Engineer, Technical Design Lead

Toast

Rachel Bradley-Haas.

We’ll see evolution in the data development lifecycle. As companies build business-critical and customer-facing functionality on top of their data warehouses, data developers (data engineers, analytics engineers, etc.) will be held to the same development lifecycle standards as software developers. [e.g. version control, CI, etc.]

Rachel Bradley-Haas

Rachel Bradley-Haas

Co-Founder

Big Time Data

Laura McKinley.

Data teams will own and execute on more projects and workflows that were traditionally done by software engineers. Given the advanced capabilities of many data platforms on the market, it is now easier than ever for data teams to own projects that action on their firm’s data. The innovation of cloud platforms puts data teams in a position to own not just their traditional responsibilities, but also some of the business workflows data enables.

Laura McKinley

Laura McKinley

Principal Consultant

DAS42

Alisa Aylward.

... As analytics engineering continues to make technical and professional strides, I think data engineers will become more focused on infrastructure and less on data. I think it'll be important in the field for data engineers to learn more about AWS [and other cloud] services, containers, and software engineering paradigms.

Alisa Aylward

Alisa Aylward

Principal Data Engineer, Technical Design Lead

Toast

Rachel Bradley-Haas.

We’ll see evolution in the data development lifecycle. As companies build business-critical and customer-facing functionality on top of their data warehouses, data developers (data engineers, analytics engineers, etc.) will be held to the same development lifecycle standards as software developers. [e.g. version control, CI, etc.]

Rachel Bradley-Haas

Rachel Bradley-Haas

Co-Founder

Big Time Data

Roles and Responsibilities

To round out the Team and Culture theme, we received contributions that speak to the nature of the roles on data teams and the way business responsibilities around them might evolve.

Brian Pei.

The creation and adoption of enterprise data “movement” tools have replaced the need for traditional data engineers, or at least the need for large teams of data engineers. Many of these traditional data engineers then pivoted to other specific enterprise data needs that were still more manual…what’s coming next is automating modeling, going from source data straight into a business metric…so analytics engineers will go the way of traditional data engineers, either with a decrease of analytics engineering positions (especially embedded AEs vs. a centralized enterprise data team) or a pivot into a new role entirely.

Brian Pei

Brian Pei

Analytics Engineer

Spotify

Schylar Brock.

...I think there will be a wider audience for certain data tools (dbt, Hightouch, etc.) within a company. More and more non-data team members will be more closely interacting with data tools to prevent bottlenecks and increase efficiency. With a strong set of best practices, solid governance, and robust testing in place, teams can enable other technical (but not data-team) teammates to work more quickly and confidently.

Schylar Brock

Schylar Brock

Sr. Analytics Engineering Lead

Vendr

Brian Pei.

The creation and adoption of enterprise data “movement” tools have replaced the need for traditional data engineers, or at least the need for large teams of data engineers. Many of these traditional data engineers then pivoted to other specific enterprise data needs that were still more manual…what’s coming next is automating modeling, going from source data straight into a business metric…so analytics engineers will go the way of traditional data engineers, either with a decrease of analytics engineering positions (especially embedded AEs vs. a centralized enterprise data team) or a pivot into a new role entirely.

Brian Pei

Brian Pei

Analytics Engineer

Spotify

Schylar Brock.

...I think there will be a wider audience for certain data tools (dbt, Hightouch, etc.) within a company. More and more non-data team members will be more closely interacting with data tools to prevent bottlenecks and increase efficiency. With a strong set of best practices, solid governance, and robust testing in place, teams can enable other technical (but not data-team) teammates to work more quickly and confidently.

Schylar Brock

Schylar Brock

Sr. Analytics Engineering Lead

Vendr

Another broad theme we’ve pulled out from our collections is generalized into “tools and trends” in the modern data stack. No predictions list would be complete without it 🤓. These vary a good bit, but we’ve also identified some sub-themes here, from CDPs to the metrics layer to data observability.

The Modern CDP

One prominent theme is the increasing importance of centralizing customer data in the data warehouse, and the rise of the “Modern CDP” or “composable CDP": a warehouse-driven version of what was previously done through traditional customer data platforms. MarTech, in general, seems to be on our contributors’ minds, including education about the technologies emerging in the space.

Craig Howard.

The value proposition of a data clean room for customer insights and program measurement is now well understood. As clean room adoption continues to accelerate, marketers are looking for the ability to bring together planning, measurement, and targeting capabilities. They will demand that clean rooms have better connectivity to multiple activation platforms to create more meaningful experiences at scale.

Craig Howard

Craig Howard

Chief Solutions Officer

Actable

David Wells.

The composable solutions that will win are likely the ones that align with other partners to package their composable stories together. Of those marketers that stay with a CDP, they will demand that the platform has interoperability/integrations with cloud solutions. The CDPs that lack an integration with cloud solutions will lose market share.

David Wells

David Wells

Business Development

Snowflake

Onkita Ganguly.

As organizations progress along the data maturity curve, they will increasingly look to combine internal data with external sources of data to get a holistic view of their market and customers. Enriching the centralized data will be top of mind, and companies will find easier ways to obtain and integrate quality partner and third-party data (e.g., from the Snowflake data marketplace) to be better poised for strategic, data-backed decisions.

Onkita Ganguly

Onkita Ganguly

Data and Analytics Manager

Brooklyn Data Co.

Dan Morris.

In 2023, interoperability will take center stage as the composability of the MarTech stack evolves from CDPs to data clean rooms and beyond.

Dan Morris

Dan Morris

Sr. Director, Industry Solutions

Databricks

Phil Wild.

With the continued difficulty of finding MarTech talent in the APAC region, we see 2023 being about building internal capability. How can brands continue to build their marketers’ technical skills and bridge the gaps between marketing, digital, and tech? Finding, retaining, and growing these people will be key to obtaining or maintaining competitive advantage. We’re seeing less of “can you implement this technology for us”, but instead, “can you help my team run this technology ongoing?” As such, if you have marketers who understand both the business and technology – hold onto them.

Phil Wild

Phil Wild

Sr. Advisory Consultant

The Lumery

Craig Howard.

The value proposition of a data clean room for customer insights and program measurement is now well understood. As clean room adoption continues to accelerate, marketers are looking for the ability to bring together planning, measurement, and targeting capabilities. They will demand that clean rooms have better connectivity to multiple activation platforms to create more meaningful experiences at scale.

Craig Howard

Craig Howard

Chief Solutions Officer

Actable

David Wells.

The composable solutions that will win are likely the ones that align with other partners to package their composable stories together. Of those marketers that stay with a CDP, they will demand that the platform has interoperability/integrations with cloud solutions. The CDPs that lack an integration with cloud solutions will lose market share.

David Wells

David Wells

Business Development

Snowflake

The Metrics Layer

What good would a 2023 look ahead piece about data be without references to “the metrics layer”? Some of our collected predictions touched on this increasingly central topic in communal data discourse.

Mary Alfheim.

As analytics teams get leaner, and their stakeholders need to dig deeper to drive additional value in a tougher economic climate, I’d expect to see even greater pushes toward efficiencies and collaboration and the rise of the metrics store. Implementing a metrics store, where teams can publish standardized logic for key business indicators, can simplify knowledge sharing across distributed analytics teams, reduce swirl in reporting at the exec level, and enable more self-service even among business users with some data know-how.

Mary Alfheim

Mary Alfheim

Head of Product Analytics, Prime Video

Amazon

Josh Temple.

I’m betting on the idea of the semantic layer, even though I’m not sure which framework or tool will win in the end. So what does a BI tool built for the semantic layer look like? Will the idea of “headless BI” (i.e. one tool for the semantic layer and a different one for BI) win out? I’m not convinced. I’m betting that next-gen BI tools will have their own charting capabilities, but will surface great APIs and database connectors so other visualization tools can query the semantic layer easily. From my vantage point, if governance and modeling is “solved” by the semantic layer, the best BI tools will excel at answering questions quickly.

Josh Temple

Josh Temple

Co-Founder

Spectacles

Mary Alfheim.

As analytics teams get leaner, and their stakeholders need to dig deeper to drive additional value in a tougher economic climate, I’d expect to see even greater pushes toward efficiencies and collaboration and the rise of the metrics store. Implementing a metrics store, where teams can publish standardized logic for key business indicators, can simplify knowledge sharing across distributed analytics teams, reduce swirl in reporting at the exec level, and enable more self-service even among business users with some data know-how.

Mary Alfheim

Mary Alfheim

Head of Product Analytics, Prime Video

Amazon

Josh Temple.

I’m betting on the idea of the semantic layer, even though I’m not sure which framework or tool will win in the end. So what does a BI tool built for the semantic layer look like? Will the idea of “headless BI” (i.e. one tool for the semantic layer and a different one for BI) win out? I’m not convinced. I’m betting that next-gen BI tools will have their own charting capabilities, but will surface great APIs and database connectors so other visualization tools can query the semantic layer easily. From my vantage point, if governance and modeling is “solved” by the semantic layer, the best BI tools will excel at answering questions quickly.

Josh Temple

Josh Temple

Co-Founder

Spectacles

Data Observability

Similarly timely were the predictions about “data observability”, a newer category of tooling growing lately in response to increasingly business-critical workloads being driven by cloud data warehouses.

Callie White.

Data observability is becoming more and more relevant for companies. Particularly if it can be automated in anyway. Companies are realizing that they can't foretell all the testing they need to write into test coverage, and they don't have the headcount/budget/time to create the monitoring and visibility needed for their stack.

Callie White

Callie White

Sr. Analytics Consultant

Montreal Analytics

Joey Bryan.

2023 will be the year of data quality. Organizations have adopted modern data stacks and self-service analytics but are still plagued with data downtime. We’ll see increased adoption of data observability platforms as success stories spread through the industry.

Joey Bryan

Joey Bryan

Product Manager

Monte Carlo

Callie White.

Data observability is becoming more and more relevant for companies. Particularly if it can be automated in anyway. Companies are realizing that they can't foretell all the testing they need to write into test coverage, and they don't have the headcount/budget/time to create the monitoring and visibility needed for their stack.

Callie White

Callie White

Sr. Analytics Consultant

Montreal Analytics

Joey Bryan.

2023 will be the year of data quality. Organizations have adopted modern data stacks and self-service analytics but are still plagued with data downtime. We’ll see increased adoption of data observability platforms as success stories spread through the industry.

Joey Bryan

Joey Bryan

Product Manager

Monte Carlo

Security, Governance, and Privacy

Just as some of our contributors see the emergence of data observability as a big trend that will support more important workloads being driven by data, others predict a renewed emphasis on security, governance, and privacy in data.

Simon O'Day.

...In 2023 and beyond, organizations will be asking: How can we allow marketers access to the data they need while maintaining the right security standards? We need to enable marketers to do their jobs, but we also want to give them guardrails to work within. When those guardrails exist, it means marketers are spending less time wrangling data, and more time delivering value to the customer.

Simon O'Day

Simon O'Day

Director of Vendor Partnerships

The Lumery

Emily Hawkins.

...Data privacy and governance are going to become even more important as the US trends more towards GDPR-type regulation. We've already seen this with California (CCPA), but more and more states are following with their own data privacy laws in 2023.

Emily Hawkins

Emily Hawkins

Data Engineering Manager, Data Platform

Drizly

Rak Garg.

I think data management and curation will become increasingly important as large models proliferate. Enterprises will increasingly look to software to uncover, curate, and label new sources of data to fine-tune models to their specific domains, driving the last mile of getting these large models into useful production circumstances.

Rak Garg

Rak Garg

Principal

Bain Capital Ventures

Thierry Sequiera.

In 2023, we believe businesses will no longer be able to capture data without telling their users why and delivering near-immediate value in return. For example: using browsing history to deliver more relevant communications across channels (email, push, SMS, in-app), using purchase behavior to inform the next offer, using engagement data to decide which channels to communicate on…all this at an individual user level.

Thierry Sequiera

Thierry Sequiera

CEO

Massive Rocket

Simon O'Day.

...In 2023 and beyond, organizations will be asking: How can we allow marketers access to the data they need while maintaining the right security standards? We need to enable marketers to do their jobs, but we also want to give them guardrails to work within. When those guardrails exist, it means marketers are spending less time wrangling data, and more time delivering value to the customer.

Simon O'Day

Simon O'Day

Director of Vendor Partnerships

The Lumery

Emily Hawkins.

...Data privacy and governance are going to become even more important as the US trends more towards GDPR-type regulation. We've already seen this with California (CCPA), but more and more states are following with their own data privacy laws in 2023.

Emily Hawkins

Emily Hawkins

Data Engineering Manager, Data Platform

Drizly

Bonus Predictions!

Some of the predictions we gathered were tough to categorize! Here are some of the more unique predictions, ranging from niche technical trends to the cloud wars.

Martin Loncaric.

I expect the average data engineer's blood pressure will drop by 0.2mmHg as better-tailored storage frameworks, formats, and compression gain traction. I don't profess to know whether all of these will soar in the coming year, but surely some will: Delta Lake, Iceberg, Deep Lake, Quantile Compression. These are already on the rise, but I believe they are still considerably undervalued.

Martin Loncaric

Martin Loncaric

Research Infrastructure Engineer

Jane Street

Leah Weiss.

We may see the return of the data cube! The OLAP cube was a critical piece of the last generation of enterprise data tools. Data teams will increasingly see version-controlled, curated datasets as their output, and allow business analysts to manage their own metrics and reporting.

Leah Weiss

Leah Weiss

CEO, Co-Founder

Preql

Robert Harmon.

A new generation of distributed data warehouse platforms are coming online and will, this year, start gaining traction. Some of these are true CDWs offered as SaaS platforms, some intended to run in a data center or a self-managed solution. Their attributes are all very similar in that they bring extreme efficiency, ease of use, and extensive features. Because of this, the use of specialized high-performance data solutions will be reduced dramatically. Data pipelines will get shorter and simpler, and the utilization of summary generation tools will be reduced as they're simply not as necessary. As a side effect, SQL will bolster its dominance in the data space.

Robert Harmon

Robert Harmon

Solutions Architect

Firebolt

Ian Macomber.

As companies spin up streaming (Materialize, Tinybird) and event-driven (Zapier, LogicLoop) infrastructure in parallel with existing batch infrastructure, it becomes harder and more important to differentiate where a source of truth comes from.

Ian Macomber

Ian Macomber

Head of Analytics Engineering & Data Science

Ramp

Brien Bernstein.

I believe GCP is finally positioned with its data suite to compete in a very real way with Amazon and Microsoft, as well as BigQuery against Snowflake. The consolidation of the analytics brand under Looker and the parity BigQuery now has with Snowflake is more obvious to consumers (if anything, BigQuery has an edge with BQML, integrations with Google Sheets, and a more favorable pricing model). It’s taken time for Google to make these investments and get the leadership in place - but I think 2023 is likey the year it comes together.

Brien Bernstein

Brien Bernstein

Sales Leader

Retool

Martin Loncaric.

I expect the average data engineer's blood pressure will drop by 0.2mmHg as better-tailored storage frameworks, formats, and compression gain traction. I don't profess to know whether all of these will soar in the coming year, but surely some will: Delta Lake, Iceberg, Deep Lake, Quantile Compression. These are already on the rise, but I believe they are still considerably undervalued.

Martin Loncaric

Martin Loncaric

Research Infrastructure Engineer

Jane Street

Leah Weiss.

We may see the return of the data cube! The OLAP cube was a critical piece of the last generation of enterprise data tools. Data teams will increasingly see version-controlled, curated datasets as their output, and allow business analysts to manage their own metrics and reporting.

Leah Weiss

Leah Weiss

CEO, Co-Founder

Preql

Conclusion

Thank you to all of the practitioners and community members who helped craft this crystal ball. We couldn’t be more excited for the year ahead, and for all of the work and innovation the community will drive that may turn some of these predictions into reality. Wishing you and yours a joyful holiday season and looking forward to what the new year has in store!

More on the blog