Redshift vs. Snowflake: The Definitive Guide
Learn the key differences between Redshift and Snowflake around architecture, pricing, security, compliance, data support, administration, data protection, cloud infrastructure, and performance.
Luke Kline
December 5, 2022
11 minutes
Every plan offers additional features, so you'll need to have a good understanding of your daily usage patterns and overall use cases. Snowflake pricing is based on individual warehouse usage. Computational warehouses come in several different sizes (X-Small, Small, Medium, Large, X-Large, etc.) An X-small warehouse uses one cluster.
For an X-Small warehouse, the pricing structure starts at approximately 0.0003 credits per second or one credit consumed per hour. Every time you increase your warehouse size, you also double the number of clusters and credits you’re consuming within Snowflake. The largest snowflake warehouse (6X-Large) burns 512 credits per hour or .1422 credits per second.
Depending on your Snowflake tier, the cost per credit can vary substantially, but the on-demand pricing for Snowflake Standard Edition starts at $2. Within Snowflake, you can pre-purchase credits or pay on-demand based on usage. The on-demand version of Snowflake Standard Edition starts at $2 per credit.
Storage costs in Snowflake are relatively straightforward. On-demand users pay a flat rate of $40 per month for each TB of data, and upfront, customers pay $23 per TB of data stored. Paying up-front and purchasing a contract is the most cost-effective way to use Snowflake because the company offers massive discounts.
AWS Redshift offers huge discounts if you pay upfront or sign a contract. However, the pricing model is more complex because there are two node types, DC2 and RA3. DC2 nodes are tightly coupled with storage. With RA3 nodes, storage and compute are managed independently.
The price for a DC2 instance ranges from $0.25 per hour for the smallest size to $4.80 per hour for the largest size. On the other hand, RA3 instances start at $1.086 per hour for the smallest size and $13.04 for the largest size.
Redshift also offers a serverless option for users who don’t want to provision and scale hardware. With this option, Redshift automatically scales up or down to meet the requirements of analytic workloads and shuts down during periods of inactivity. Consumption is calculated per minute based on RPU (Redshift Processing Unit) hours. The price for an RPU is $0.45 per hour.
Cloud Infrastructure
One of the core things to keep in mind when it comes to Snowflake and Redshift is that Snowflake is a SaaS solution, and Redshift is a PaaS solution. With Snowflake, you don’t have to maintain any infrastructure. The same cannot be said for Redshift. On top of this, Snowflake runs across clouds, so it’s incredibly flexible. On the other hand, Redshift is limited to AWS and cannot run on another cloud provider like Azure or GCP (Google Cloud Platform).
Performance
Every benchmark can tell its unique story and be tailored to perform in a certain way. Out of the box with no fine-tuning, Snowflake tends to beat out every other cloud data warehouse with superior performance. This is not to say there is not a specific subset of data or use case where Amazon Redshift would outperform Snowflake. If you’re interested in actual benchmarks, Fivetran and Hashmap have done in-depth analyses comparing both platforms.
Pros And Cons
Snowflake is extremely user-friendly and designed to work straight out of the box with immediate value. Once you load your data into the platform, you can start querying it immediately. Snowflake also supports an extensive ecosystem of third-party partners and integrates directly with many different technologies like Fivetran and dbt.
Amazon Redshift is a much older platform than Snowflake, so it carries some legacy baggage. You’re forced to set up infrastructure and configure hardware before you can start seeing value. Redshift integrates natively with the rest of the AWS ecosystem (e.g., AWS Glue and Sage Maker.)
If you're operating a lot of on-premises technology that doesn't integrate easily with cloud-based services, Redshift will likely be a better option unless you want to undergo a full migration and move all of your data to the cloud. It’s much easier to optimize for cost in AWS Redshift for additional savings, but you'll most likely see slower performance.
The key difference to understand about these cloud-based data warehouses is that Redshift is "hands-on," and Snowflake is "set it and forget it." Either way, both platforms will connect seamlessly to your Business Intelligence tools.
What Comes After Redshift & Snowflake?
Cloud data warehouses like Snowflake and Redshift help you build dashboards and establish KPIs, but they don’t solve the “last-mile” analytics challenge of Data Activation. Data warehouses are only accessible to your technical users who know how to write SQL, which means your business teams can’t get access to the robust customer data living in your warehouse.
Hightouch solves this problem with Reverse ETL by querying directly against your warehouse and syncing your data directly to your frontline business systems (e.g., Salesforce, Hubspot, Google Ads, Braze, Iterable, etc.)